$\mu = 1.20 \text{ mm}^{-1}$

T = 298 (2) K

 $0.38 \times 0.28 \times 0.03 \text{ mm}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(1-benzofuro[3,2-c]pyridine-κN)dichloridocobalt(II)

Viktor Vrábel,^a* Ľubomír Švorc,^a Nadežda Juristová,^b Jozef Miklovič^b and Jozef Kožíšek^c

^aInstitute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ^bDepartment of Chemistry, Faculty of Natural Sciences, University of St Cyril and Methodius, 917 01 Trnava, Slovak Republic, and ^cInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic Correspondence e-mail: viktor.vrabel@stuba.sk

Received 22 August 2007; accepted 23 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.053; wR factor = 0.196; data-to-parameter ratio = 14.7.

In the title complex, $[CoCl_2(C_{11}H_7NO)_2]$, the Co^{II} atom lies on a twofold rotation axis four-coordinated by two Cl atoms and two N-donor atoms from two 1-benzofuro[3,2-*c*]pyridine ligands, giving a slightly distorted tetrahedral coordination environment. The N/Co/N and Cl/Co/Cl planes are nearly perpendicular, with a dihedral angle of 87.1 (1)°. The dihedral angle between the two benzofuropyridine ligands is 45.8 (1)°. In the crystal structure, molecules are linked into a twodimensional network parallel to the *ab* plane by C–H···Cl hydrogen bonds.

Related literature

For ligand synthesis, see: Bobošík *et al.* (1995); Bencková & Krutošíková (1995, 1999). For general background, see: Baran *et al.* (2005); Billson *et al.* (2000); Fritsky *et al.* (2003); Jensen *et al.* (2000); Kotera *et al.* (2003); Lee & Wang (2007); Lumme *et al.* (1996); Masaki *et al.* (2002); Miklovič *et al.* (2004); Yang *et al.* (2006). For related structures, see: Amirnasr *et al.* (2002); Khalaji *et al.* (2006); Zhao *et al.* (2006).

a = 7.7063 (2) Å

b = 12.1886 (3) Å c = 20.4444 (5) Å

Experimental

Crystal data	
$[\text{CoCl}_2(\text{C}_{11}\text{H}_7\text{NO})_2]$	
$M_r = 468.21$	
Monoclinic, $C2/c$	

 $\beta = 96.217 (3)^{\circ}$ $V = 1909.03 (8) Å^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Oxford Diffraction Gemini R CCD	15916 measured reflections
diffractometer	1942 independent reflections
Absorption correction: analytical	1667 reflections with $I > 2\sigma(I)$
(Clark & Reid, 1995)	$R_{\rm int} = 0.030$
$T_{\min} = 0.698, \ T_{\max} = 0.967$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ 132 parameters $wR(F^2) = 0.196$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.97$ e Å $^{-3}$ 1942 reflections $\Delta \rho_{min} = -0.49$ e Å $^{-3}$

Table 1

Selected geometric parameters (Å, °).

N1-Co1	2.033 (4)	Cl1-Co1	2.2259 (15)
N1 ⁱ -Co1-N1	115.3 (2)	N1-Co1-Cl1 ⁱ	103.65 (12)
N1-Co1-Cl1	108.07 (13)	CI1-Co1-CI1	118.59 (10)

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

Table 2 Hydrogen-bond geometry (\mathring{A}°)

Tyurogen-bonu	geometry	(\mathbf{A}, \mathbf{A})	•

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdots Cl1^{ii}$	0.93	2.68	3.481 (6)	145
	. 1 1	. 1		

Symmetry code: (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004).

The authors thank the Grant Agency of the Ministry of Education of the Slovak Republic (grant Nos. 1/3584/06 and 1/2449/05), and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2450).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Amirnasr, M., Mahmoudkhani, A. H., Gorji, A., Dehghanpour, S. & Bijanzadeh, H. R. (2002). *Polyhedron*, 21, 2733–2742.
- Baran, P., Boča, M., Boča, R., Krutošíková, A., Miklovič, J., Pelikán, J. & Titiš, J. (2005). *Polyhedron*, **24**, 1510–1516.
- Bencková, M. & Krutošíková, A. (1995). Monatsh. Chem. 126, 753-758.
- Bencková, M. & Krutošíková, A. (1999). Collect. Czech. Chem. Commun. 64, 539–547.
- Billson, T. S., Crane, J. D., Fox, O. D. & Heath, S. L. (2000). Inorg. Chem. Commun. 3, 718–720.
- Bobošík, V., Krutošíková, A. & Jordis, U. (1995). Monatsh. Chem. 126, 749–753.

metal-organic compounds

- Brandenburg, K. (2001). *DIAMOND*. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). *Inorg. Chim. Acta*, **346**, 111–118.
- Jensen, P., Batten, S. R., Moubaraki, B. & Murray, K. S. (2000). Chem. Commun. pp. 793–794.
- Khalaji, A. D., Amirnasr, M. & Daran, J.-C. (2006). Acta Cryst. E62, m687– m689.
- Kotera, T., Fujita, A., Mikuriya, M., Tsutsumi, H. & Handa, M. (2003). *Inorg. Chem. Commun.* 6, 322–324.
- Lee, G.-H. & Wang, H.-T. (2007). Acta Cryst. C63, m216-m219.

- Lumme, P. O., Knuuttila, H. & Lindell, E. (1996). Acta Cryst. C52, 51-56.
- Masaki, M. E., Prince, B. J. & Turnbull, M. M. (2002). J. Coord. Chem. 55, 1337–1551.
- Miklovič, J., Krutošíková, A. & Baran, P. (2004). *Acta Cryst.* C60, m227–m230. Oxford Diffraction (2006). *CrysAlis CCD* and *CrysAlis RED*. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yang, L., Jiang, N.-Y., Chen, X.-H. & Li, S.-L. (2006). Acta Cryst. E62, m2636– m2638.
- Zhao, W.-T., Liu, H.-M. & Zhang, W.-Q. (2006). Acta Cryst. E62, m1579m1581.

supplementary materials

Acta Cryst. (2007). E63, m2427-m2428 [doi:10.1107/S160053680704161X]

Bis(1-benzofuro[3,2-c]pyridine-*KN*)dichloridocobalt(II)

V. Vrábel, L. Svorc, N. Juristová, J. Miklovic and J. Kozísek

Comment

Cobalt complexes are of great interest in coordination chemistry in relation to catalysis and enzymatic reactions, magnetism and molecular architectures (Billson *et al.*, 2000; Fritsky *et al.*, 2003; Kotera *et al.*, 2003). Most of these compounds represent discrete mononuclear complexes (Masaki *et al.*, 2002; Khalaji *et al.*, 2006; Zhao *et al.*, 2006) but in some of them the Co atoms are connected into dinuclear units or polymers (Lumme *et al.*, 1996; Yang *et al.*, 2006; Jensen *et al.*, 2000; Lee & Wang, 2007). The furo[3,2-*c*]pyridine and its derivatives represent quinoline isosters, in which the benzene ring is replaced by the furan and pyridine ring can be readily coordinated to metal centers through N-donor atom (Miklovič *et al.*, 2004; Baran *et al.*, 2005). We report here the synthesis and crystal structure of the title compound, a mononuclear Co^{II} compound with a benzofuropyridine (BFP) ligand.

The Co^{II} atom lying on a twofold rotation axis is in a tetrahedral geometry and is coordinated by two BFP ligands and two chloride anions (Fig. 1). The Co—N [2.033 (4) Å] and Co—Cl [2.2259 (15) Å] bond lengths in the title compound are in good agreement with the correspoding mean distances in the related complexes (Amirnasr *et al.*, 2002; Zhao *et al.*, 2006; Khalaji *et al.*, 2006). The bond angles subtended at the Co1 atom range from 103.65 (12) to 118.59 (10)°, indicating a slightly distorted tetrahedral coordination. The dihedral angle between the nearly planar BFP ligands is 45.8 (1)°.

In the crystal structure of the title compound, C—H…Cl interactions (Table 2) involving atoms H2A and Cl1 connect the molecules into a two-dimensional network parallel to the *ab* plane. The formation of a four-coordinate complex, rather than a possible six-coordinate one, is attributed to the large volume of the monodentate BFP ligand.

Experimental

The organic ligand, [1]benzofuro[3,2-*c*]pyridine, was prepared according to literature procedures of Bobošík *et al.* (1995) and Bencková & Krutošíková (1995, 1999). To a $CoCl_2 \cdot 6H_2O$ (1 mmol) solution in ethanol (4 ml) was added the solution of [1]benzofuro[3,2-*c*]pyridine (3 mmol) in ethanol (4 ml) at room temperature. Small blue crystals were formed after 3 d. These were filtered off, washed with ethanol and recrystallized from tetrahydrofuran.

Refinement

All H atoms were placed in geometrically calculated positions and allowed to ride on their parent atoms, with C—H distances of 0.93 Å and U_{iso} set at $1.2U_{eq}$ of the parent atom.

Figures

Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation (-x, y, 1/2 - z).

Bis(1-benzofuro[3,2-c]pyridine-κN)dichloridocobalt(II)

Crystal data

$[CoCl_2(C_{11}H_7NO)_2]$	$F_{000} = 948$
$M_r = 468.21$	$D_{\rm x} = 1.629 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 8019 reflections
a = 7.7063 (2) Å	$\theta = 3.1 - 28.1^{\circ}$
b = 12.1886 (3) Å	$\mu = 1.20 \text{ mm}^{-1}$
c = 20.4444 (5) Å	T = 298 (2) K
$\beta = 96.217 \ (3)^{\circ}$	Plate, blue
$V = 1909.03 (8) \text{ Å}^3$	$0.38 \times 0.28 \times 0.03 \text{ mm}$
Z = 4	

Data collection

Oxford Diffraction Gemini R CCD diffractometer	1942 independent reflections
Radiation source: fine-focus sealed tube	1667 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.030$
T = 298(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
Rotation method data acquisition using ω and ϕ scans	$\theta_{\min} = 4.1^{\circ}$
Absorption correction: analytical (Clark & Reid, 1995)	$h = -9 \rightarrow 9$
$T_{\min} = 0.698, \ T_{\max} = 0.967$	$k = -15 \rightarrow 15$
15916 measured reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.053$	H-atom parameters constrained
$wR(F^2) = 0.196$	$w = 1/[\sigma^2(F_o^2) + (0.041P)^2 + 12.9573P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
1942 reflections	$\Delta \rho_{max} = 0.97 \text{ e } \text{\AA}^{-3}$
132 parameters	$\Delta \rho_{min} = -0.49 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct matheds	Extinction correction: none

methods

Special details

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C2	0.0900 (7)	0.1711 (5)	0.3404 (3)	0.0465 (12)
H2A	0.1235	0.1378	0.3028	0.056*
C3	0.1133 (8)	0.1134 (5)	0.3987 (3)	0.0505 (13)
H3A	0.1587	0.0426	0.4010	0.061*
C5	-0.0026 (9)	0.2030 (6)	0.6201 (3)	0.0629 (18)
H5A	0.0322	0.1409	0.6445	0.076*
C6	-0.0707 (9)	0.2930 (7)	0.6481 (3)	0.067 (2)
H6A	-0.0807	0.2924	0.6930	0.080*
C7	-0.1249 (9)	0.3847 (6)	0.6118 (3)	0.0609 (17)
H7A	-0.1717	0.4439	0.6326	0.073*
C8	-0.1110 (7)	0.3902 (5)	0.5448 (3)	0.0484 (13)
H8A	-0.1472	0.4521	0.5205	0.058*
C9	-0.0246 (7)	0.3226 (4)	0.3884 (2)	0.0390 (11)
H9A	-0.0718	0.3928	0.3847	0.047*
C10	0.0656 (7)	0.1663 (4)	0.4527 (3)	0.0418 (11)
C11	0.0114 (7)	0.2096 (5)	0.5533 (3)	0.0471 (13)
C12	-0.0411 (7)	0.3001 (4)	0.5151 (2)	0.0418 (12)
C13	-0.0044 (6)	0.2728 (4)	0.4488 (2)	0.0359 (10)
N1	0.0219 (6)	0.2728 (3)	0.33452 (19)	0.0388 (9)
O4	0.0769 (6)	0.1264 (3)	0.51576 (19)	0.0527 (10)
Cl1	0.2471 (2)	0.45525 (13)	0.24621 (7)	0.0552 (4)
Col	0.0000	0.36200 (8)	0.2500	0.0387 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.051 (3)	0.043 (3)	0.047 (3)	0.006 (2)	0.014 (2)	-0.003 (2)
C3	0.057 (3)	0.037 (3)	0.057 (3)	0.011 (2)	0.003 (3)	0.002 (2)
C5	0.070 (4)	0.081 (5)	0.037 (3)	-0.022 (4)	-0.003 (3)	0.018 (3)
C6	0.071 (4)	0.100 (6)	0.029 (3)	-0.031 (4)	0.005 (3)	-0.004 (3)
C7	0.066 (4)	0.074 (4)	0.046 (3)	-0.021 (3)	0.016 (3)	-0.016 (3)
C8	0.050 (3)	0.055 (3)	0.041 (3)	-0.011 (3)	0.010 (2)	-0.008 (2)
C9	0.044 (3)	0.037 (2)	0.037 (2)	0.000 (2)	0.008 (2)	0.001 (2)
C10	0.041 (3)	0.041 (3)	0.042 (3)	0.000 (2)	-0.001 (2)	0.008 (2)
C11	0.052 (3)	0.053 (3)	0.036 (3)	-0.013 (2)	0.000 (2)	0.007 (2)
C12	0.045 (3)	0.050 (3)	0.031 (2)	-0.010 (2)	0.004 (2)	0.003 (2)
C13	0.039 (2)	0.035 (2)	0.034 (2)	-0.005 (2)	0.0050 (19)	0.0010 (19)
N1	0.045 (2)	0.039 (2)	0.034 (2)	0.0006 (18)	0.0096 (17)	0.0008 (17)
O4	0.063 (3)	0.048 (2)	0.044 (2)	0.0023 (19)	-0.0042 (18)	0.0157 (17)
Cl1	0.0641 (9)	0.0577 (9)	0.0452 (7)	-0.0172 (7)	0.0122 (6)	0.0013 (6)
Col	0.0484 (6)	0.0396 (6)	0.0298 (5)	0.000	0.0116 (4)	0.000

Geometric parameters (Å, °)

	1			
C2—N1		1.346 (7)	C8—H8A	0.93

supplementary materials

C^{2}	1 270 (9)	C0 N1	1 240 (6)
$C_2 = C_3$	1.379 (8)	C9—N1	1.340 (6)
C2—H2A	0.93	C9—C13	1.309 (7)
C3—C10	1.362 (8)	C9—H9A	0.93
С3—НЗА	0.93	C1004	1.3/3 (6)
05-06	1.368 (11)		1.405 (7)
	1.384 (8)		1.385 (7)
C5—H5A	0.93		1.397 (7)
C6C7	1.382 (11)	C12—C13	1.454 (7)
С6—Н6А	0.93	NI—Col	2.033 (4)
C/C8	1.386 (8)		2.2259 (15)
С7—Н7А	0.93	Co1—N1 ¹	2.033 (4)
C8—C12	1.391 (8)	Co1—Cl1 ⁱ	2.2259 (15)
N1—C2—C3	124.0 (5)	C3—C10—C13	121.8 (5)
N1—C2—H2A	118.0	O4—C10—C13	111.4 (5)
C3—C2—H2A	118.0	C5—C11—C12	123.5 (6)
C10—C3—C2	115.9 (5)	C5—C11—O4	124.8 (6)
С10—С3—НЗА	122.0	C12—C11—O4	111.7 (4)
С2—С3—НЗА	122.0	C11—C12—C8	119.1 (5)
C6—C5—C11	116.2 (6)	C11—C12—C13	105.6 (5)
С6—С5—Н5А	121.9	C8—C12—C13	135.3 (5)
С11—С5—Н5А	121.9	C9—C13—C10	117.7 (5)
C5—C6—C7	122.0 (6)	C9—C13—C12	136.5 (5)
С5—С6—Н6А	119.0	C10-C13-C12	105.7 (4)
С7—С6—Н6А	119.0	C9—N1—C2	118.7 (4)
C6—C7—C8	121.3 (6)	C9—N1—Co1	116.8 (3)
С6—С7—Н7А	119.4	C2—N1—Co1	124.3 (3)
С8—С7—Н7А	119.4	C10-04-C11	105.6 (4)
C7—C8—C12	117.9 (6)	N1 ⁱ —Co1—N1	115.3 (2)
С7—С8—Н8А	121.0	N1 ⁱ —Co1—Cl1	103.65 (12)
C12—C8—H8A	121.0	N1—Co1—Cl1	108.07 (13)
N1—C9—C13	121.8 (5)	N1 ⁱ —Co1—Cl1 ⁱ	108.07 (13)
N1—C9—H9A	119.1	N1—Co1—Cl1 ⁱ	103.65 (12)
С13—С9—Н9А	119.1	Cl1—Co1—Cl1 ⁱ	118.59 (10)
C3—C10—O4	126.8 (5)		
N1—C2—C3—C10	-1.3 (9)	O4—C10—C13—C12	-0.7 (6)
C11—C5—C6—C7	1.0 (10)	C11—C12—C13—C9	179.2 (6)
C5—C6—C7—C8	-0.7 (10)	C8—C12—C13—C9	-1.0 (11)
C6—C7—C8—C12	0.3 (9)	C11-C12-C13-C10	0.8 (6)
C2—C3—C10—O4	-179.7 (5)	C8—C12—C13—C10	-179.4 (6)
C2—C3—C10—C13	0.6 (8)	C13—C9—N1—C2	0.0 (8)
C6—C5—C11—C12	-0.8 (9)	C13—C9—N1—Co1	-175.6 (4)
C6—C5—C11—O4	-179.8 (6)	C3—C2—N1—C9	1.0 (8)
C5—C11—C12—C8	0.4 (8)	C3—C2—N1—Co1	176.3 (4)
O4—C11—C12—C8	179.5 (5)	C3—C10—O4—C11	-179.5 (6)
C5-C11-C12-C13	-179.8 (5)	C13—C10—O4—C11	0.3 (6)
O4-C11-C12-C13	-0.7 (6)	C5-C11-O4-C10	179.3 (5)
C7—C8—C12—C11	-0.1 (8)	C12—C11—O4—C10	0.3 (6)

C7—C8—C12—C13	-179.8 (6)	C9—N1—Co1—N1 ⁱ		-157.1 (4)
N1-C9-C13-C10	-0.6 (7)	C2—N1—Co1—N1 ⁱ		27.5 (4)
N1—C9—C13—C12	-178.9 (5)	C9—N1—Co1—Cl1		87.5 (4)
C3—C10—C13—C9	0.3 (8)	C2—N1—Co1—Cl1		-87.9 (4)
O4—C10—C13—C9	-179.4 (4)	C9—N1—Co1—Cl1 ⁱ		-39.2 (4)
C3—C10—C13—C12	179.1 (5)	C2—N1—Co1—Cl1 ⁱ		145.4 (4)
Symmetry codes: (i) $-x$, y , $-z+1/2$.				
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
C2—H2A···Cl1 ⁱⁱ	0.93	2.68	3.481 (6)	145
Symmetry codes: (ii) $-x+1/2$, $y-1/2$, $-z+1/2$.				

